

AÑO ACADEMICO: 2017

DEPARTAMENTO Y/O DELEGACION: MATEMATICA

PROGRAMA DE CATEDRA (nombre exacto s/plan de estudios en mayúscula): **ALGEBRA I**

OBLIGATORIA / OPTATIVA: OBLIGATORIA

CARRERA/S A LA QUE PERTENECE Y/O SE OFRECE (si es Optativa): PROFESORADO EN MATEMATICA

AREA: ALGEBRA

PLAN DE ESTUDIOS - ORDENANZA Nº: 1467/14

CARGA HORARIA SEMANAL SEGÚN PLAN DE ESTUDIOS: 6

CARGA HORARIA TOTAL: 8

REGIMEN: (bimestral, cuatrimestral, anual) CUATRIMESTRAL

CUATRIMESTRE: (primero, segundo) SEGUNDO

EQUIPO DE CATEDRA (completo):

Apellido y Nombres

Cargo

JUAN, MARIA TERESA

PAD

BIANCHI, MARIA JESUS

AYP

ASIGNATURAS CORRELATIVAS (S/Plan de Estudios):

- PARA CURSAR: (en el caso de Materias Optativas especificar si la exigencia es tener Cursado Aprobado o Final Aprobado) MATEMATICA GENERAL
- PARA RENDIR EXAMEN FINAL: MATEMATICA GENERAL

FUNDAMENTACION: Esta asignatura tiene como eje central el estudio de los conjuntos numéricos, comenzaremos entonces indagación acerca de cuales son las ideas presentes en los estudiantes respecto de distintos aspectos de los conjuntos numéricos que conocen.

Retomaremos el estudio de elementos de lógica proposicional y de teoría intuitiva de conjuntos que serán la base del lenguaje y del método algebraico, introducidos en la

asignatura Matemática General, junto con los conceptos de relaciones y funciones, los que además de estar presentes en todas las unidades, permiten definir el concepto de operación y de estructura algebraica, que serán los que presidan el estudio de los distintos conjuntos numéricos.

Con respecto a los conjuntos numéricos, a partir de la definición axiomática del cuerpo ordenado de los números reales (R) se definirán los subconjuntos más notables de R, como son los números naturales (N), los números enteros (Z) y los números racionales (Q) y por último, el axioma de completitud concluirá el estudio del conjunto de números reales en esta asignatura.

Se dará especial atención a la aritmética ya que ésta brinda un campo muy vasto de experimentación y trabajo a los alumnos, permitiéndoles con conceptos muy simples trabajar en profundidad procedimientos propios de la matemática.

La estructura de anillo estudiada en el conjunto de los números enteros permitirá introducir y formalizar el estudio de los polinomios a coeficientes reales, conceptos de indudable belleza matemática y de múltiples aplicaciones. El descubrir que los números reales no son suficientes para desarrollar la teoría de las raíces de un polinomio y con el sustento de la axiomatización del conjunto de números reales, llevará a introducir el cuerpo de números complejos, a fin de estudiar, no sólo, sus propiedades algebraicas sino algunas geométricas como así también completar el estudio de la factorización de polinomios según sus raíces

Con todo esto los alumnos contarán con una visión global del campo del álgebra y tendrán la base para explorar en los múltiples temas que hacen al álgebra y a la matemática en general.

OBJETIVOS:

- · Desarrollar el pensamiento lógico.
- · Adquirir lenguaje algebraico.
- · Conocer con profundidad los conjuntos de Números Reales y su estructura algebraica.
- · Adquirir un marco teórico sólido que respalde los contenidos elementales que enseñará en el nivel medio.
- · Adquirir un marco teórico sólido que respalde sus futuros estudios matemáticos.
- · Adquirir una actitud creativa y razonadora frente a los problemas matemáticos.

1. CONTENIDOS SEGÚN PLAN DE ESTUDIOS:

Introducción a la lógica proposicional. Teoría de Conjuntos. Funciones.

Números naturales. Conjuntos Inductivos. Principio de inducción. Principio de Buena ordenación. Combinatoria. Binomio de Newton. Cuerpo ordenado completo de los números reales.

2. CONTENIDO PROGRAMA ANALÍTICO:

UNIDAD I: ELEMENTOS DE LÓGICA PROPOSICIONAL. CONJUNTOS.

Repaso de los contenidos trabajados en Matemática General:

Ventajas del lenguaje simbólico. Símbolos. Conectivos lógicos. Operaciones lógicas: negación, conjunción, disyunción, implicación, doble implicación, disyunción excluyente. Condición necesaria y suficiente. Ley lógica. Implicaciones asociadas. Razonamiento deductivo válido. Demostración. Contraejemplos. Teoremas: demostración indirecta, directa y por el absurdo. Funciones proposicionales, su cuantificación.

Conjuntos: Concepto de conjunto. Maneras de definir un conjunto. Pertenencia. Inclusión. Propiedades. Conjuntos especiales. Igualdad entre conjuntos. Relación con la lógica proposicional. Operaciones con conjuntos. Conjunto de partes. Par ordenado, igualdad de pares ordenados. Producto cartesiano entre conjuntos: definición, representación, propiedades.

Relaciones: definición, gráfico, dominio e imagen, propiedades, relación inversa. Relaciones de equivalencia.

Funciones: definición, ejemplos, notaciones, dominio, codominio, restricción y ampliación de funciones, imagen de un subconjunto del dominio, funciones inyectivas, suryectivas y biyectivas, composición de funciones, función identidad, función inversa, función inversa y biyectividad. Operaciones. Monoides. Asociatividad, neutro, inversos. Conmutatividad. Semigrupo. Semigrupo Aplic (X). Grupos. Ejemplos

UNIDAD II: CUERPO ORDENADO Y COMPLETO DE LOS NÚMEROS REALES

Definición axiomática del conjunto de los números reales: axiomas de cuerpo, propiedades de la igualdad. Relación de orden. Representación en la recta real. Axioma de completitud. Raíces cuadradas.

UNIDAD III: NÚMEROS NATURALES:

Definición del conjunto de números naturales (N) como conjunto inductivo: conjunto inductivo, propiedades. Principio de inducción, criterio de demostración por inducción, teoremas. Generalizaciones del principio de inducción. Principio de buena ordenación: primer elemento, conjunto bien ordenado, teoremas: "Todo subconjunto finito de R, es bien ordenado"; "N es bien ordenado". Variantes del principio de inducción. Definiciones inductivas: potencia de números reales de exponente natural, la función factorial: propiedades, números combinatorios, formula del binomio de Newton. Principio general de la enumeración. Intervalo natural inicial. Conjuntos finitos e infinitos. Coordinabilidad. Conjuntos numerables y no numerables. Variaciones con repetición de n elementos de

orden k, (Función de Ik en In). Variaciones simples de n elementos de orden k, (Funciones inyectivas de Ik en In). Permutaciones de n elementos, (Funciones biyectivas de In en In). Combinaciones de n elementos tomados de k, (Funciones estrictamente crecientes de Ik en In). Permutaciones con repetición. Combinatoria con elementos indistinguibles.

UNIDAD IV: NÚMEROS ENTEROS

Definición de Z, propiedades. Divisibilidad en Z: definición, números primos, números pares, teoremas, existencia del algoritmo de división en Z, máximo coman divisor, existencia y unicidad del m.c.d., generalización del m.c.d, números coprimos, teoremas, mínimo común múltiplo, teoremas, relación del m.c.d. con el m.c.m.. Teorema fundamental de la Aritmética, aplicaciones.

UNIDAD V: NÚMEROS RACIONALES

Definición de Q, propiedades de cuerpo ordenado. Conjunto acotado, supremo, ínfimo. Axioma de completitud de R. Teorema de arquimedianidad. Densidad de Q en R. Existencia en R de las raíces cuadradas. Números irracionales

UNIDAD VI: ANILLO DE POLINOMIOS SOBRE R.

Conjunto de sucesiones de reales con "casi" todos los elementos nulos: S. Estructura de anillo sobre S. Producto externo en S. Definición de R[X]. Grado de un polinomio: definición, propiedades, R[X] como dominio de integridad. Unidades de R[X]. Divisibilidad: definiciones, teoremas, algoritmo de división en R[X], polinomios irreducibles. Teorema fundamental de la aritmética en R[X]. Máximo común divisor: definición, teoremas, Polinomios coprimos. Especialización: definición, expresión polinomial en X - c, raíces de un polinomio, teoremas, factorización según sus raíces, número máximo de raíces de un polinomio. Teorema de Gauss, aplicación.

UNIDAD VII: NÚMEROS COMPLEJOS.

Definición del conjunto de los números complejos(C). Estructura de cuerpo sobre C. La función conjugación: definición, propiedades. Norma y valor absoluto de un complejo: definición, teoremas, desigualdad triangular, corolarios. Representación de los complejos en el plano. Forma trigonométrica de un complejo. Teorema de De Moivre (producto y potencia de complejos). Polinomios complejos, raíces, teoremas. Raíces de la unidad. Teorema fundamental del Álgebra, corolarios. Potencia de complejos con exponente racional (complemento del teorema de De Moivre).

3. BIBLIOGRAFÍA BASICA Y DE CONSULTA:

Básica:

· GENTILE, E.. Notas de álgebra I. 4^{ta} edición. Ed. Eudeba. (Ediciones Colihue). 1988

· SANCHEZ, C. Lecciones de Álgebra. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, 2014.

De consulta:

- · BIRKOFF MAC LANE. Álgebra moderna. Ed. Vicens.
- · BOSCH J, Int. al simbolismo lógico, Ed. Eudeba
- COPI I., Introducción a la Lógica, Ed. Eudeba
- · GENTILE. E . Notas de Algebra. EUDEBA. Cursos y Seminarios de Matemática

4. PROPUESTA METODOLOGICA:

La materia cuenta con 6 h/sem de las cuales aproximadamente 3 serán teóricas y 3 prácticas (pudiendo variar según la necesidad del tema). Se desarrollarán clases teóricas expositivas, propiciando la participación de los estudiantes. Luego en las clases prácticas se presentará, en cada una, problemas de aplicación de los conceptos estudiados, los mismos serán resueltos en forma grupal por los alumnos y puestos en común al finalizar cada clase.

5. EVALUACIÓN Y CONDICIONES DE ACREDITACION:

ALUMNOS REGULARES: La evaluación de los aprendizajes consistirá en un seguimiento personalizado por parte de los docentes de cada estudiante, a fin de registrar sus avances y corregir rumbos.

Para la acreditación de la cursada se deberán aprobar 2 exámenes parciales escritos y 2 orales. Para aprobar el examen escrito, el estudiante deberá contar con el 60% de las tareas realizas en forma correcta. Los exámenes orales consistirán en la exposición de algún ejercicio seleccionado por la cátedra y que el alumno preparará en forma domiciliaria. Ambos exámenes parciales versarán sobre resolución de problemas similares a los desarrollados en las clases prácticas. Cada parcial contará con un recuperatorio similar al mismo a realizarse una semana después de cada parcial.

Luego los alumnos con cursada aprobada deberán aprobar un examen final en las fechas que la universidad fije al respecto.

ALUMNOS PROMOCIONALES: Los alumnos que aprueben cada parcial, con más del 80% podrán rendir un parcial teórico para su aprobación se deberá contar con el 70% de las tareas resueltas de manera correcta. La aprobación de todos los parciales prácticos y teóricos equivale a la aprobación de la asignatura por promoción.

ALUMNOS LIBRES: Los alumnos que rindan la asignatura en la condición de libre, una vez que aprueben el examen final escrito deberán rendir un examen oral en la misma fecha que la universidad fije al respecto.

6. DISTRIBUCIÓN HORARIA:

HORAS TEORICO- PRACTICAS: Lunes de 9 a 12hs.
Jueves de 9 a 12hs

7. HORAS DE CONSULTA: A acordar con los estudiantes.

8. CRONOGRAMA TENTATIVO:

Primer parcial: 15 de septiembre Recuperatorio: 22 de Septiembre Segundo Parcial: 17 de noviembre Recuperatorio: 24 de noviembre

PROPESOR

CONFORMIDAD DEL DEPARTAMENTO

admor v

Lic. MARIA NES SANCHEZ
Secretaria Atadémica

Secretaria Action Bariloche
Centro Regional Universitario Bariloche
CONFORMIDACIO SECRETARIA ACADEMICA

CENTRO REGIÓNAL UNIVERSITARIO BARILOCHE